Investigations of the EPR g Factors for Er³⁺ in CaMoO₄

Shao-Yi Wu^{a,b}, Hui-Ning Dong^{b,c}, and Wang-He Wei^a

- ^a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110015, P. R. China
- ^c College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

Reprint requests to S.-Y. W; E-mail: shaoyi_wu@163.com

Z. Naturforsch. 59a, 341 – 345 (2004); received March 25, 2004

The electron paramagnetic resonance (EPR) g factors g_{\parallel} and g_{\perp} for Er^{3+} in CaMoO₄ are theoretically investigated by using the perturbation formulas of the g factors for a $4f^{11}$ ion in tetragonal symmetry. In these formulas, the contributions to the g factors arising from the second-order perturbation terms and the admixture of various states are considered. The crystal-field parameters for the tetragonally distorted tetrahedra are determined by using the superposition model and the structural data of the impurity Er^{3+} on the host Ca^{2+} site in CaMoO₄. The calculated g factors agree with the observed values. The validity of the results is discussed.

Key words: Electron Paramagnetic Resonance (EPR); Crystal- and Spin Hamiltonians; Er³⁺; CaMoO₄.

1. Introduction

CaMoO₄ is among the group of scheelite-type structure with C_{4h}^{6} point symmetry ($I4_{1}/a$ space group). Recently, CaMoO₄ has attracted great interest because of its application in silica-supported catalysts [1], as dispersive element in electronically tunable lasers [2] and mixed electron-hole-ion conductor [3, 4]. Particularly, this kind of compounds can be easily doped with rare earth ions and grown to large crystals which are the candidates of solid state laser materials [5, 6]. In order to study the electronic energy transfer mechanisms among the rare earth ions as well as the effect of crystal-fields, temperature and pressure on the properties of these materials, extensive investigations have been carried out by means of high pressure Raman and X-ray excited luminescence spectroscopies [7-9]. The electron paramagnetic resonance g factors for Er³⁺ in CaMoO₄ were measured by EPR technique decades ago [10, 11]. Until now, however, these experimental results have not been theoretically studied. Since information about the electronic properties of Er³⁺ ions in CaMoO₄ may be useful to understand the properties of this material (or other scheelite-type compounds), theoretical investigations on the EPR g factors of the

above Er^{3+} impurity center are significant. In this paper, we investigate theoretically the g factors for Er^{3+} in $\mathrm{CaMoO_4}$ by using the perturbation formulas of the g factors for a $4\mathrm{f}^{11}$ ion in tetragonal symmetry. In these formulas, the contributions to the g factors arising from the second-order perturbation terms and the admixture of various states are taken into account. The validity of the results is discussed.

2. Calculation

In scheelite-type CaMoO₄, the Ca²⁺ site is coordinated to eight nearest-neighbour oxygen ions which are grouped into two sets of tetragonally distorted interpenetrating tetrahedra. The site symmetry for Ca²⁺ is S₄ [12,13]. Trivalent rare earth ions (e.g., Er³⁺) tend to locate on Ca²⁺ sites and conserve the tetragonal (S₄) site symmetry, because charge compensation is regarded as distant from the impurity center [13]. For an Er³⁺(4f¹¹) ion in a tetragonal (S₄) site without inversion symmetry, the 4 I_{15/2} ground state may be split into eight Kramers doublets. The lowest doublet can be ($\Gamma_5 + \Gamma_6$) or ($\Gamma_7 + \Gamma_8$), corresponding to the cubic (T_d) representation Γ_6 or Γ_7 , with an average value \bar{g} [= $(g_{\parallel} + 2g_{\perp})/3$] of about 6.8 or 6 [15],

respectively (note: the above notation for T_d [15] is an exchange of that for octahedral cubic O_h symmetry in [16, 17]). According to the observed $\bar{g}(\approx 6)$ for Er^{3+} in CaMoO₄ [10, 11], the lowest doublet should be $(\Gamma_7 + \Gamma_8)$. Therefore, the perturbation formulas of the g factors for a $4f^{11}$ ion in tetragonal symmetry can be expressed as [18]

$$g_{\parallel} = g_{\parallel}^{(1)} + g_{\parallel}^{(2)},$$

$$g_{\parallel}^{(1)} = 2g_{J}\langle\Gamma\gamma|\hat{J}_{Z}|\Gamma\gamma\rangle,$$

$$g_{\parallel}^{(2)} = 2\sum_{x}'\frac{\langle\Gamma\gamma|\hat{H}_{CF}|\Gamma_{X}\gamma_{X}\rangle\langle\Gamma_{X}\gamma_{X}|\hat{J}_{Z}|\Gamma\gamma\rangle}{E(\Gamma_{X}) - E(\Gamma)},$$

$$g_{\perp} = g_{\perp}^{(1)} + g_{\perp}^{(2)},$$

$$g_{\perp}^{(1)} = g_{J}\langle\Gamma\gamma|\hat{J}_{+}|\Gamma\gamma'\rangle,$$

$$g_{\perp}^{(2)} = 0.$$

$$(1)$$

Here g_J is the Lande factor and \hat{J} is the orbital angular momentum operator. \hat{H}_{CF} denotes the crystal-field interaction. The parameters g_J for various $^{2S+1}L_J$ configurations are collected in [16, 17]. It is noted that the nondiagonal elements g_J' may occur in the expansions

of (1) and (2) for the interactions between different $^{2S+1}L_J$ configurations. In the above formulas, besides the contributions to the g factors from the first-order perturbation terms, we also include the contributions from the second-order perturbation terms, which result from the admixture of the lowest $(\Gamma_7 + \Gamma_8)$ doublet with the other fourteen irreducible representations Γ_x [i.e., six $(\Gamma_5 + \Gamma_6)$ and eight $(\Gamma_7 + \Gamma_8)$] due to the tetragonal splitting of the ground ${}^4I_{15/2}$ and the first excited ${}^{4}I_{13/2}$ states via crystal-field \hat{H}_{CF} and orbital angular momentum \hat{J} interactions [18, 19]. As for (2), the second-order perturbation contribution $g_{\perp}^{(2)}$ vanishes because none of the fourteen Γ_x has a non-zero matrix element with the lowest $(\Gamma_7 + \Gamma_8)$ doublet, for both \hat{H}_{CF} and the x or y component of \hat{J} operators. In the above formulas, the basic function $\Gamma \gamma^{(\gamma)}$ (where γ and γ' denote the two components of the Γ irreducible representation) contains admixtures of various states, namely the admixture between the ground ⁴I_{15/2} and the excited ${}^{4}I_{13/2}$ states via \hat{H}_{CF} interaction, the admixture among ${}^{2}K_{15/2}$, ${}^{2}L_{15/2}$, and ${}^{4}I_{15/2}$ and that among ${}^{2}K_{13/2}$, ${}^{2}I_{13/2}$ and ${}^{4}I_{13/2}$ via spin-orbit coupling interaction. So, the expression for $\Gamma \gamma^{(\gamma')}$ may be written as [18, 19]

$$\begin{split} |\Gamma\gamma^{(\gamma')}\rangle &= \sum_{M_{J1}} C(^{4}\mathrm{I}_{15/2}; \Gamma\gamma^{(\gamma')}\mathrm{M}_{J1})\mathrm{N}_{15/2}(|^{4}\mathrm{I}_{15/2}\mathrm{M}_{J1}\rangle + \lambda_{K}|^{2}\mathrm{K}_{15/2}\mathrm{M}_{J1}\rangle + \lambda_{L}|^{2}\mathrm{L}_{15/2}\mathrm{M}_{J1}\rangle) \\ &+ \sum_{M_{J2}} C(^{4}\mathrm{I}_{13/2}; \Gamma\gamma^{(\gamma')}\mathrm{M}_{J2})\mathrm{N}_{13/2}(|^{4}\mathrm{I}_{13/2}\mathrm{M}_{J2}\rangle + \lambda_{K}'|^{2}\mathrm{K}_{13/2}\mathrm{M}_{J2}\rangle + \lambda_{I}|^{2}\mathrm{L}_{13/2}\mathrm{M}_{J2}\rangle), \end{split}$$
(3)

where M_{J1} and M_{J2} are, respectively, in the ranges of -15/2 to 15/2 and -13/2 to 13/2. The coefficients $C(^4\mathrm{I}_{15/2};\Gamma\gamma^{(\gamma')}\mathrm{M}_{J1})$ or $C(^4\mathrm{I}_{13/2};\Gamma\gamma^{(\gamma')}\mathrm{M}_{J2})$ can be obtained by diagonalizing the 30×30 energy matrix including the $^4\mathrm{I}_{15/2}$ and $^4\mathrm{I}_{13/2}$ states. N_i and λ_i are the normalization factors and the mixing coefficients, respectively. They can be determined by using the spin-orbit coupling matrix elements and the perturbation method.

As mentioned before, the Ca^{2+} site occupied by the impurity Er^{3+} has the S_4 local symmetry. However, the D_{2d} symmetry is proved to be a good approach due to the rather small distortion from D_{2d} to S_4 [20, 21], as treated for some trivalent rare earth ions in similar scheelite-type LiYF₄ by many authors [22, 23]. So we still take the D_{2d} approximation here for simplicity. According to [16, 17], the crystal-field interaction \hat{H}_{CF} for a $4f^{11}$ (Er^{3+}) ion in tetragonal (D_{2d}) symmetry can

be written in terms of the Stevens operator equivalents, i. e.,

$$\hat{H}_{CF} = B_2^0 O_2^0 + B_4^0 O_4^0 + B_6^0 O_6^0 + B_4^4 O_4^4 + B_6^4 O_6^4.$$
 (4)

Here B_k^q (where k = 2, 4, 6; $|q| \le k$) are the crystal-field parameters. From the superposition model [24], they can be expressed as

$$B_k^q = \sum_{j=1}^2 \bar{A}_k(R_0) (R_0/R_j)^{t_k} K_k^q(\theta_j, \phi_j), \tag{5}$$

where $K_k^q(\theta_j, \phi_j)$ are the coordination factors [24, 25], which can be obtained from the local structural data of the studied defect centers. t_k and $\bar{A}(R_0)$ are, respectively, the power-law exponents and the intrinsic parameters (with the reference distance R_0). The Ca²⁺ ion in CaMoO₄ is coordinated to eight nearest O²⁻ ions, with four of them at the distance R_1 and angles

Table 1. The EPR g factors for the tetragonal Er^{3+} center in $\mathrm{CaMoO_4}$.

	g_{\parallel}	g_{\perp}
Cal.a	1.043	8.452
Cal. ^b	1.141	8.452
Expt. [10, 11]	1.176	8.55

^a Calculation by considering the contributions from only the first-order perturbation terms. ^b Calculation by considering the contributions from both the first- and second-order perturbation terms.

 θ_1 and ϕ_1 , and the other four at the different distance R_2 and angles θ_2 and ϕ_2 , where θ_i and ϕ_i (j = 1, 2)are, respectively, the polar angles and the azimuthal angles of the metal-ligand distances R_i related to the Z (or fourfold) and X axes of the crystal [20, 21]. For the Ca²⁺ site in CaMoO₄, $R_1 \approx 2.472 \text{ Å}$, $\theta_1 \approx 67.55^{\circ}$, $\phi_1 \approx -36.03^\circ$, $R_2 \approx 2.460$ Å, $\theta_2 \approx 141.05^\circ$ and $\phi_2 \approx$ -29.67° [21]. According to [21, 26], the power-law exponents $t_2 \approx 3.5$, $t_4 \approx t_6 \approx 6$ and the intrinsic parameters $\bar{A}_2(R_0) \approx 400 \text{ cm}^{-1}$, $\bar{A}_4(R_0) \approx 50(2) \text{ cm}^{-1}$, and $\bar{A}_6(R_0) \approx 17(3) \text{ cm}^{-1}$ [with the reference bonding length $R_0 \approx 2.466$ Å, which is very close to the average metal-ligand distance $\bar{R} \approx 2.466 \text{ Å}$ in the studied CaMoO₄] were obtained for Er³⁺ in scheelite CaWO₄. So, they are also adopted for the Er³⁺ center in this work, except that we take $\bar{A}_4(R_0) \approx 50.2 \text{ cm}^{-1}$ and $\bar{A}_6(R_0) \approx 21.1 \text{ cm}^{-1}$ here for CaMoO₄ in consideration of the small difference between the structural data for CaMoO₄ and CaWO₄ [21]. The free-ion parameters of the Coulombic repulsion ($F^2 \approx 97504 \text{ cm}^{-1}$, $F^4 \approx 70746 \text{ cm}^{-1} \text{ and } F^6 \approx 48042 \text{ cm}^{-1}), \text{ the two-}$ body interaction parameters ($\alpha \approx 20.95$ cm⁻¹, $\beta \approx$ $-689 \text{ cm}^{-1} \text{ and } \gamma \approx 1839 \text{ cm}^{-1})$ and the spin-orbit coupling coefficient ($\zeta_{4f} \approx 2339 \text{ cm}^{-1}$) in the energy matrix were obtained for Er³⁺-doped CaWO₄ [27]. They can be approximately adopted here. In view of the covalency between the 4f orbitals of the Er³⁺ ion and the 2p orbitals of O^{2-} for the Er^{3+} - O^{2-} bonds in CaMoO₄, the orbital reduction factor $k \approx 0.979$ for the similar Er³⁺-O²⁻ bond in MgO: Er³⁺ [16] and that (≈ 0.979) for Yb³⁺ in scheelites [28] can also be applied here. Substituting these parameters into (1) and (2), the g factors for the Er^{3+} center in CaMoO₄ are calculated and compared with experiment in Table 1.

3. Discussion

From Table 1 one can find that the calculated g factors for Er^{3+} in $\mathrm{CaMoO_4}$ based on the perturbation formulas of the g factors for $4\mathrm{f}^{11}$ ions in tetragonal sym-

metry agree with the observed values, suggesting that the perturbation formulas and the related parameters adopted in this work are reasonable. There are several points that may be discussed here:

- 1. The observed axial g factors reveal the tetragonal symmetry of the Er³⁺ center in CaMoO₄. It is noted that there are two possible cases which would lower the local symmetry of the impurity center, i.e., vicinal charge compensation and off-center displacement of the impurity ion. On the one hand, charge compensation ions may be far enough from the impurity center and then influence on the local symmetry may be negligible [13]. On the other hand, Kiel and Mims [20] found that impurity ions (e.g., divalent or trivalent 3dⁿ ions) smaller than 0.8 Å would be unstable at the Ba^{2+} (with the ionic radius of about 1.34 Å [29]) site in scheelite-type BaWO₄ and then are off-center displaced away from the ideal cation site, based on the Born-Mayer theory of ionic bonding. However, for the studied tetragonal center in CaMoO₄, the impurity Er^{3+} (with the ionic radius of about 0.881 Å [29]) is not sufficiently small to be unstable at the host Ca²⁺ site. Consequently, both possible cases are excluded and the local tetragonal symmetry of the host Ca²⁺ site is therefore conserved in the studied system.
- 2. According to our calculations, the contributions to g_{\parallel} arising from the second-order perturbation terms are about 9% those from the first-order perturbation terms. So, in order to explain the g factors for Er^{3+} centers in crystals more satisfactorily, the second-order perturbation contributions should be taken into account. Based on the above studies, the importance of the contributions due to the second-order perturbation terms is related to the tetragonal crystal-fields, i.e., both the numerators and the denominators in (1) increase with the increase of the strength of the crystalfields. Meanwhile, the contributions arising from some irreducible representation Γ_x are very small or cancel one another. On the whole, the total contributions to g_{\parallel} from the second-order perturbation terms are approximately 9% those from the first-order perturbation ones. On the other hand, the contributions to the g factors from the admixtures of various states are about 5%, which is smaller than those from the second-order perturbation terms. Obviously, higher excited states (e.g., ⁴I_{11/2}, ⁴I_{9/2} etc.) would have even smaller influence.
- 3. It is noted that there may be some errors in our calculations. (i) The free-ion parameters for the similar CaWO₄ in [27] have fitting errors. Nevertheless, these errors have only slight influence (no more than

2%) on the energy separations between the ground ${}^{4}I_{15/2}$ and the excited states (${}^{4}I_{13/2}$, ${}^{2}K_{15/2}$, ${}^{2}L_{15/2}$, ${}^{2}K_{13/2}$, ${}^{2}I_{13/2}$ et. al.) and bring still smaller errors (no more than 1%) to the parameters N_i and λ_i in (3). Since the basic function $\Gamma\gamma$ and the calculated g factors are mainly related to the crystal-field splitting of the ground ${}^{4}I_{15/2}$ state, the calculation errors of the g factors due to the fitting errors of the free-ion parameters are expected to be less than 2%. (ii) The effective impurity-ligand distance may be dissimilar to the corresponding metal-ligand distances R_i due to the difference in charge and ionic radius between the impurity Er³⁺ and the replaced Ca²⁺ in CaMoO₄. However, the above errors in R_i would only slightly affect the tetragonal distortion and the crystal-field parameters B_k^q , which are more sensitive to the polar angles θ_i . Even if the host metal-ligand distances R_i are replaced by the impurity-ligand distances R'_{i} from the approximate formulas $R'_i \approx R_j + (r_i - r_h)/2$ (where r_i is the ionic radius of the impurity Er^{3+} and $r_h \ (\approx 0.99 \ \mathrm{\AA})$ the radius of the host Ca²⁺ [29]) [30,31], the calculated g factors would change by less than 2%. (iii) For simplicity, the D_{2d} approach instead of S₄ symmetry is adopted to describe the crystal-field interaction of (4) in this work. In fact, even though one takes the exact S₄ symmetry, the magnitudes of the imaginary parts of the rank-4 and rank-6 crystal-field parameters are very small, as shown in [21, 32, 33], and so their contributions to the coefficient $C(^4\mathrm{I}_{15/2};\Gamma\gamma^{(\gamma')}\mathrm{M}_{J1})$ or $C({}^{4}I_{13/2}; \Gamma \gamma^{(\gamma')}M_{J2})$ in $\Gamma \gamma$ and the g factors are expected to be no more than 4%. (iv) Even in the approach of D_{2d} symmetry, the angular distortions for the

polar angles θ_i due to the size and charge mismatching substitution of Ca²⁺ by Er³⁺ are not considered in the calculations. Since the host Ca²⁺ is replaced by the slightly smaller impurity Er³⁺, local relaxation around the impurity can be introduced. On the other hand, the local relaxation may be largely counteracted by the extra positive charge of Er³⁺ and hence stronger electrostatic attraction between Er³⁺ and the ligands. As a result, the [ErO₈]¹³⁻ cluster should be relatively stable and then the angular distortion can be regarded as negligible in CaMoO₄. (v) The errors due to adoption of the superposition model parameters for the similar $CaWO_4:Er^{3+}$ can also affect the calculated g factors. According to the studies, the errors of the theoretical g factors are expected to be no more than 3% whereas the parameters \bar{A}_k and t_k change by 10%. In addition, part of the effects of the above errors (i.e., points (i) \sim (iv)) on the final g factors can be assumed to be absorbed in the parameters $\bar{A}_4(R_0)$ and $\bar{A}_6(R_0)$. In consideration of the above analyses, the theoretical calculations and the results in this work can still be regarded as reasonable.

In conclusion, the EPR g factors of the tetragonal Er^{3+} center in CaMoO₄ are theoretically investigated by using the perturbation formulas of the g factors for a $4f^{11}$ ion in tetragonal symmetry. According to the above studies, the experimental EPR data [10, 11] for CaMoO₄: Er^{3+} can be reasonably attributed to the impurity Er^{3+} occupying the host Ca^{2+} site with approximately tetragonal (D_{2d}) point symmetry. Similarly, the theoretical formulas and the methods of this work can also be applied to Er^{3+} in other tetragonal scheelitetype ABO₄ compounds.

- K. Malka and J.-M. Tatibouet, J. Catalysis 175, 204 (1998).
- [2] M. M. Mazur, Kh. M. Makhmudov, and V. I. Pustovolt, Sov. J. Quant. Electr. 18, 453 (1988).
- [3] A. Petrov and P. Kofstad, J. Solid State Chem. **30**, 83 (1979).
- [4] L.B. Barbosa, D. Reyes Ardila, C. Cusatis, and J.P. Andreeta, Journal of Crystal Growth 235, 327 (2002).
- [5] S. Preziosi, R. R. Soden, and L. G. Van Uitert, J. Appl. Phys. 33, 1893 (1962).
- [6] D. Christofilos, G. A. Kourouklis, and S. Ves, J. Phys. Chem. Solids 56, 1125 (1995).
- [7] A. Jayaraman, B. Batlogg, and L. G. Van Uitert, Phys. Rev. B 28, 4774 (1983).
- [8] E. Sarantopoulou, C. Raptis, S. Ves, D. Christofilos,

- and G.A. Kourouklis, J. Phys. Condens. Matter 14, 8925 (2002).
- [9] S. B. Mikhrin, A. N. Mishin, A. S. Potapov, P. A. Rodnyi, and A. S. Voloshinovskii, Nuclear Instruments and Methods in Physics Research A 486, 295 (2002).
- [10] G. M. Zverev, L. V. Makarenko, and A. I. Smirnov, Sov. Phys. Solid State 9 (1968) 2883 [Fiz. Tverd Tela 9, 3651 (1967)].
- [11] I. N. Kurkin and E. A. Tsvetkov, Sov. Phys. Solid State **11** (1970) 3027 [Fiz. Tverd Tela **11**, 3610 (1969)].
- [12] T. T. Baseive, A. A. Sobol, Y. Voronko, and P. G. Zverev, Opt. Mater. 15, 205 (2000).
- [13] J. M. Moreau, Ph. Galez, J. P. Peignux, and M. V. Korzhik, J. Alloys and Comp. 238, 46 (1996).
- [14] J. Bronstrin and S. Maniv, Phys. Rev. **153**, 303 (1967).

- [15] J.D. Kingsley and M. Aven, Phys. Rev. 155, 235 (1967).
- [16] A. Abragam, and B. Bleanely, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, London 1970.
- [17] L. A. Sorin and M. V. Vlasova, Electron Spin Resonance of Paramagnetic Crystals, Translated from Russian by P. Gluck, Plenum Press, New York 1973.
- [18] S. Y. Wu and W. C. Zheng, Spectrochim. Acta A 58, 3179 (2002).
- [19] H. N. Dong and S. Y. Wu, Z. Naturforsch. 58a, 507 (2003).
- [20] A. Kiel and W. B. Mims, Phys. Rev. B 1, 2935 (1970).
- [21] Vishwamittar and S. P. Puri, J. Chem. Phys. 61, 3720 (1974).
- [22] M. A. Couto dos Santos, E. Antic-Fidancev, J. Y. Gesland, J. C. Krupa, M. Lemaýtre-Blaise, and P. Porcher, J. Alloys and Comp. 275/277, 435 (1998).
- [23] R. Cavellec, S. Hubert, and E. Simoni, J. Solid State Chem. 129, 189 (1997).

- [24] D. J. Newman and B. Ng, Rep. Prog. Phys. **52**, 699 (1989)
- [25] C. Rudowicz, J. Phys. C: Solid State Phys. 20, 6033 (1987).
- [26] D. J. Newman, Aust. J. Phys. 30, 315 (1977).
- [27] E. Rukmini, A. R. Devi, and C. K. Jayasankar, Physica B 193,166 (1994).
- [28] J. P. Sattler and J. Nemarich, Phys. Rev. 1, 4249 (1970).
- [29] R. C. Weast, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton 1989, p. F187.
- [30] Z. M. Li and W. L. Shuen, J. Phys. Chem. Solids 57, 1073 (1996).
- [31] M. Moreno, M. T. Barriuso, and J. A. Aramburu, Appl. Magn. Reson. 3, 283 (1992).
- [32] M. A. Couto dos Santos, P. Porcher, J. C. Krupa, and J. Y. Gesland, J. Phys.: Condens. Matter 8, 4643 (1996).
- [33] F. G. Anderson, H. Weidner, P. L. Summers, and R. E. Peale, J. Lumin. **62**, 77 (1994).